On the asymptotic behavior of solutions of nonlinear differential equations of integer and also of non-integer order
نویسنده
چکیده
We present conditions under which all solutions of the fractional differential equation with the Caputo derivative D ax(t) = f(t, x(t)), a > 1, α ∈ (1, 2), (1) are asymptotic to at+ b as t → ∞ for some real numbers a, b. AMS Classification: 34E10, 34A34
منابع مشابه
An efficient extension of the Chebyshev cardinal functions for differential equations with coordinate derivatives of non-integer order
In this study, an effective numerical method for solving fractional differential equations using Chebyshev cardinal functions is presented. The fractional derivative is described in the Caputo sense. An operational matrix of fractional order integration is derived and is utilized to reduce the fractional differential equations to system of algebraic equations. In addition, illustrative examples...
متن کاملComparison of acceleration techniques of analytical methods for solving differential equations of integer and fractional order
The work addressed in this paper is a comparative study between convergence of the acceleration techniques, diagonal pad'{e} approximants and shanks transforms, on Homotopy analysis method and Adomian decomposition method for solving differential equations of integer and fractional orders.
متن کاملA distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations
The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative of Caputo type with order and scale index . We es...
متن کاملSolutions Approaching Polynomials at Infinity to Nonlinear Ordinary Differential Equations
This paper concerns the solutions approaching polynomials at ∞ to n-th order (n > 1) nonlinear ordinary differential equations, in which the nonlinear term depends on time t and on x, x′, . . . , x(N), where x is the unknown function and N is an integer with 0 ≤ N ≤ n − 1. For each given integer m with max{1, N} ≤ m ≤ n− 1, conditions are given which guarantee that, for any real polynomial of d...
متن کاملON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS
Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...
متن کامل